CamDiff: Camouflage Image Augmentation via Diffusion Model
The burgeoning field of camouflaged object detection (COD) seeks to identify objects that blend into their surroundings. Despite the impressive performance of recent models, we have identified a limitation in their robustness, where existing methods may misclassify salient objects as camouflaged ones, despite these two characteristics being contradictory. This limitation may stem from lacking multi-pattern training images, leading to less saliency robustness. To address this issue, we introduce CamDiff, a novel approach inspired by AI-Generated Content (AIGC) that overcomes the scarcity of multi-pattern training images. Specifically, we leverage the latent diffusion model to synthesize salient objects in camouflaged scenes, while using the zero-shot image classification ability of the Contrastive Language-Image Pre-training (CLIP) model to prevent synthesis failures and ensure the synthesized object aligns with the input prompt. Consequently, the synthesized image retains its original camouflage label while incorporating salient objects, yielding camouflage samples with richer characteristics. The results of user studies show that the salient objects in the scenes synthesized by our framework attract the user's attention more; thus, such samples pose a greater challenge to the existing COD models. Our approach enables flexible editing and efficient large-scale dataset generation at a low cost. It significantly enhances COD baselines' training and testing phases, emphasizing robustness across diverse domains. Our newly-generated datasets and source code are available at https://github.com/drlxj/CamDiff.
READ FULL TEXT