Candidate Constrained CRFs for Loss-Aware Structured Prediction
When evaluating computer vision systems, we are often concerned with performance on a task-specific evaluation measure such as the Intersection-Over-Union score used in the PASCAL VOC image segmentation challenge. Ideally, our systems would be tuned specifically to these evaluation measures. However, despite much work on loss-aware structured prediction, top performing systems do not use these techniques. In this work, we seek to address this problem, incorporating loss-aware prediction in a manner that is amenable to the approaches taken by top performing systems. Our main idea is to simultaneously leverage two systems: a highly tuned pipeline system as is found on top of leaderboards, and a traditional CRF. We show how to combine high quality candidate solutions from the pipeline with the probabilistic approach of the CRF that is amenable to loss-aware prediction. The result is that we can use loss-aware prediction methodology to improve performance of the highly tuned pipeline system.
READ FULL TEXT