Carbon-Efficient Neural Architecture Search

07/09/2023
by   Yiyang Zhao, et al.
0

This work presents a novel approach to neural architecture search (NAS) that aims to reduce energy costs and increase carbon efficiency during the model design process. The proposed framework, called carbon-efficient NAS (CE-NAS), consists of NAS evaluation algorithms with different energy requirements, a multi-objective optimizer, and a heuristic GPU allocation strategy. CE-NAS dynamically balances energy-efficient sampling and energy-consuming evaluation tasks based on current carbon emissions. Using a recent NAS benchmark dataset and two carbon traces, our trace-driven simulations demonstrate that CE-NAS achieves better carbon and search efficiency than the three baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro