CARS: Continuous Evolution for Efficient Neural Architecture Search

09/11/2019
by   Zhaohui Yang, et al.
17

Searching techniques in most of existing neural architecture search (NAS) algorithms are mainly dominated by differentiable methods for the efficiency reason. In contrast, we develop an efficient continuous evolutionary approach for searching neural networks. Architectures in the population which share parameters within one supernet in the latest iteration will be tuned over the training dataset with a few epochs. The searching in the next evolution iteration will directly inherit both the supernet and the population, which accelerates the optimal network generation. The non-dominated sorting strategy is further applied to preserve only results on the Pareto front for accurately updating the supernet. Several neural networks with different model sizes and performance will be produced after the continuous search with only 0.4 GPU days. As a result, our framework provides a series of networks with the number of parameters ranging from 3.7M to 5.1M under mobile settings. These networks surpass those produced by the state-of-the-art methods on the benchmark ImageNet dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset