Characterising User Content on a Multi-lingual Social Network

by   Pushkal Agarwal, et al.

Social media has been on the vanguard of political information diffusion in the 21st century. Most studies that look into disinformation, political influence and fake-news focus on mainstream social media platforms. This has inevitably made English an important factor in our current understanding of political activity on social media. As a result, there has only been a limited number of studies into a large portion of the world, including the largest, multilingual and multi-cultural democracy: India. In this paper we present our characterisation of a multilingual social network in India called ShareChat. We collect an exhaustive dataset across 72 weeks before and during the Indian general elections of 2019, across 14 languages. We investigate the cross lingual dynamics by clustering visually similar images together, and exploring how they move across language barriers. We find that Telugu, Malayalam, Tamil and Kannada languages tend to be dominant in soliciting political images (often referred to as memes), and posts from Hindi have the largest cross-lingual diffusion across ShareChat (as well as images containing text in English). In the case of images containing text that cross language barriers, we see that language translation is used to widen the accessibility. That said, we find cases where the same image is associated with very different text (and therefore meanings). This initial characterisation paves the way for more advanced pipelines to understand the dynamics of fake and political content in a multi-lingual and non-textual setting.


page 2

page 4

page 5

page 6

page 7

page 8

page 9


Cross-lingual COVID-19 Fake News Detection

The COVID-19 pandemic poses a great threat to global public health. Mean...

Dataset of Propaganda Techniques of the State-Sponsored Information Operation of the People's Republic of China

The digital media, identified as computational propaganda provides a pat...

NLPDove at SemEval-2020 Task 12: Improving Offensive Language Detection with Cross-lingual Transfer

This paper describes our approach to the task of identifying offensive l...

Cross-lingual Inductive Transfer to Detect Offensive Language

With the growing use of social media and its availability, many instance...

Towards the B-TAMBiT: A Back-Translation with an Adjudicator with Mono and Bilingual Tests

Researchers have turned to various disciplines in search for theories th...

Analyzing the Intensity of Complaints on Social Media

Complaining is a speech act that expresses a negative inconsistency betw...

MARMOT: A Deep Learning Framework for Constructing Multimodal Representations for Vision-and-Language Tasks

Political activity on social media presents a data-rich window into poli...

Please sign up or login with your details

Forgot password? Click here to reset