Characterizations and Directed Path-Width of Sequence Digraphs

11/06/2018
by   Frank Gurski, et al.
0

Computing the directed path-width of a directed graph is an NP-hard problem. Even for digraphs of maximum semi-degree 3 the problem remains hard. We propose a decomposition of an input digraph G=(V,A) by a number k of sequences with entries from V, such that (u,v) in A if and only if in one of the sequences there is an occurrence of u appearing before an occurrence of v. We present several graph theoretical properties of these digraphs. Among these we give forbidden subdigraphs of digraphs which can be defined by k=1 sequence, which is a subclass of semicomplete digraphs. Given the decomposition of digraph G, we show an algorithm which computes the directed path-width of G in time O(k· (1+N)^k), where N denotes the maximum sequence length. This leads to an XP-algorithm w.r.t. k for the directed path-width problem. Our result improves the algorithms of Kitsunai et al. for digraphs of large directed path-width which can be decomposed by a small number of sequence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro