Classification by sparse additive models

12/04/2022
by   Felix Abramovich, et al.
0

We consider (nonparametric) sparse additive models (SpAM) for classification. The design of a SpAM classifier is based on minimizing the logistic loss with a sparse group Lasso/Slope-type penalties on the coefficients of univariate components' expansions in orthonormal series (e.g., Fourier or wavelets). The resulting classifier is inherently adaptive to the unknown sparsity and smoothness. We show that it is nearly-minimax (up to log-factors) within the entire range of analytic, Sobolev and Besov classes, and illustrate its performance on the real-data example.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset