Click Prediction Boosting via Ensemble Learning Pipelines
Online travel agencies (OTA's) advertise their website offers on meta-search bidding engines. The problem of predicting the number of clicks a hotel would receive for a given bid amount is an important step in the management of an OTA's advertisement campaign on a meta-search engine because bid times number of clicks defines the cost to be generated. Various regressors are ensembled in this work to improve click prediction performance. Following the preprocessing procedures, the feature set is divided into train and test groups depending on the samples' logging dates. The data collection is then subjected to XGBoost-based dimension reduction, which significantly reduces the dimension of features. The optimum hyper-parameters are then found by applying Bayesian Hyper-parameter optimization to the XGBoost, LightGBM, and SGD models. Individually, ten distinct machine learning models are tested, as well as combining them to create ensemble models. Three alternative ensemble solutions have been suggested. The same test set is used to test both individual and ensemble models, and the results of 46 model combinations demonstrate that stack ensemble models yield the desired R2 score of all. In conclusion, the ensemble model improves the prediction performance by about 10
READ FULL TEXT