Cluster-and-Conquer: When Randomness Meets Graph Locality

10/22/2020
by   George Giakkoupis, et al.
5

K-Nearest-Neighbors (KNN) graphs are central to many emblematic data mining and machine-learning applications. Some of the most efficient KNN graph algorithms are incremental and local: they start from a random graph, which they incrementally improve by traversing neighbors-of-neighbors links. Paradoxically, this random start is also one of the key weaknesses of these algorithms: nodes are initially connected to dissimilar neighbors, that lie far away according to the similarity metric. As a result, incremental algorithms must first laboriously explore spurious potential neighbors before they can identify similar nodes, and start converging. In this paper, we remove this drawback with Cluster-and-Conquer (C 2 for short). Cluster-and-Conquer boosts the starting configuration of greedy algorithms thanks to a novel lightweight clustering mechanism, dubbed FastRandomHash. FastRandomHash leverages random-ness and recursion to pre-cluster similar nodes at a very low cost. Our extensive evaluation on real datasets shows that Cluster-and-Conquer significantly outperforms existing approaches, including LSH, yielding speed-ups of up to x4.42 while incurring only a negligible loss in terms of KNN quality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro