ClusterNet: Instance Segmentation in RGB-D Images

07/24/2018
by   Lin Shao, et al.
0

We propose a method for instance-level segmentation that uses RGB-D data as input and provides detailed information about the location, geometry and number of individual objects in the scene. This level of understanding is fundamental for autonomous robots. It enables safe and robust decision-making under the large uncertainty of the real-world. In our model, we propose to use the first and second order moments of the object occupancy function to represent an object instance. This enables us to transform the problem of instance-level segmentation into a one-stage regression problem. We train an hourglass Deep Neural Network (DNN) where each pixel in the output votes for the position of the corresponding object center and for the object's size and pose. The final instance segmentation is achieved through clustering in the space of moments. The object-centric training loss is defined on the output of the clustering. Our method outperforms the state-of-the-art instance segmentation method on our synthesized dataset. We show that our method generalizes well on real-world data achieving visually better segmentation results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset