Co-Saliency Spatio-Temporal Interaction Network for Person Re-Identification in Videos

04/10/2020
by   Jiawei Liu, et al.
0

Person re-identification aims at identifying a certain pedestrian across non-overlapping camera networks. Video-based re-identification approaches have gained significant attention recently, expanding image-based approaches by learning features from multiple frames. In this work, we propose a novel Co-Saliency Spatio-Temporal Interaction Network (CSTNet) for person re-identification in videos. It captures the common salient foreground regions among video frames and explores the spatial-temporal long-range context interdependency from such regions, towards learning discriminative pedestrian representation. Specifically, multiple co-saliency learning modules within CSTNet are designed to utilize the correlated information across video frames to extract the salient features from the task-relevant regions and suppress background interference. Moreover, multiple spatialtemporal interaction modules within CSTNet are proposed, which exploit the spatial and temporal long-range context interdependencies on such features and spatial-temporal information correlation, to enhance feature representation. Extensive experiments on two benchmarks have demonstrated the effectiveness of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset