Combining Data from Surveys and Related Sources

10/19/2022
by   Dexter Cahoy, et al.
0

To improve the precision of inferences and reduce costs there is considerable interest in combining data from several sources such as sample surveys and administrative data. Appropriate methodology is required to ensure satisfactory inferences since the target populations and methods for acquiring data may be quite different. To provide improved inferences we use methodology that has a more general structure than the ones in current practice. We start with the case where the analyst has only summary statistics from each of the sources. In our primary method, uncertain pooling, it is assumed that the analyst can regard one source, survey r, as the single best choice for inference. This method starts with the data from survey r and adds data from those other sources that are shown to form clusters that include survey r. We also consider Dirichlet process mixtures, one of the most popular nonparametric Bayesian methods. We use analytical expressions and the results from numerical studies to show properties of the methodology.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset