Complete Dictionary Recovery over the Sphere II: Recovery by Riemannian Trust-region Method

11/15/2015
by   Ju Sun, et al.
0

We consider the problem of recovering a complete (i.e., square and invertible) matrix A_0, from Y ∈R^n × p with Y = A_0 X_0, provided X_0 is sufficiently sparse. This recovery problem is central to theoretical understanding of dictionary learning, which seeks a sparse representation for a collection of input signals and finds numerous applications in modern signal processing and machine learning. We give the first efficient algorithm that provably recovers A_0 when X_0 has O(n) nonzeros per column, under suitable probability model for X_0. Our algorithmic pipeline centers around solving a certain nonconvex optimization problem with a spherical constraint, and hence is naturally phrased in the language of manifold optimization. In a companion paper (arXiv:1511.03607), we have showed that with high probability our nonconvex formulation has no "spurious" local minimizers and around any saddle point the objective function has a negative directional curvature. In this paper, we take advantage of the particular geometric structure, and describe a Riemannian trust region algorithm that provably converges to a local minimizer with from arbitrary initializations. Such minimizers give excellent approximations to rows of X_0. The rows are then recovered by linear programming rounding and deflation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro