Computational Aspects of Sturdy and Flimsy Numbers

02/07/2020
by   Trevor Clokie, et al.
0

Following Stolarsky, we say that a natural number n is flimsy in base b if some positive multiple of n has smaller digit sum in base b than n does; otherwise it is sturdy. We develop algorithmic methods for the study of sturdy and flimsy numbers. We provide some criteria for determining whether a number is sturdy. Focusing on the case of base b = 2, we study the computational problem of checking whether a given number is sturdy, giving several algorithms for the problem. We find two additional, previously unknown sturdy primes. We develop a method for determining which numbers with a fixed number of 0's in binary are flimsy. Finally, we develop a method that allows us to estimate the number of k-flimsy numbers with n bits, and we provide explicit results for k = 3 and k = 5. Our results demonstrate the utility (and fun) of creating algorithms for number theory problems, based on methods of automata theory.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset