Computational Technologies for Brain Morphometry

10/11/2018
by   Zicong Zhou, et al.
0

In this paper, we described a set of computational technologies for image analysis with applications in Brain Morphometry. The proposed technologies are based one a new Variational Principle which constructs a transformation with prescribed Jacobian determinant (which models local size changes) and prescribed curl-vector (which models local rotations). The goal of this research is to convince the image research community that Jacobian determinant as well as curl-vector should be used in all steps of image analysis. Specifically, we develop an optimal control method for non-rigid registration; a new concept and construction of average transformation; and a general robust method for construction of unbiased template from a set of images. Computational examples are presented to show the effects of curl-vector and the effectiveness of optimal control methods for non-rigid registration and our method for construction of unbiased template.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro