Computationally efficient human body modelling for real time motion comfort assessment

by   Raj Desai, et al.

Due to the complexity of the human body and its neuromuscular stabilization, it has been challenging to efficiently and accurately predict human motion and capture posture while being driven. Existing simple models of the seated human body are mostly two-dimensional and developed in the mid-sagittal plane ex-posed to in-plane excitation. Such models capture fore-aft and vertical motion but not the more complex 3D motions due to lateral loading. Advanced 3D full-body active human models (AHMs), such as in MADYMO, can be used for comfort analysis and to investigate how vibrations influence the human body while being driven. However, such AHMs are very time-consuming due to their complexity. To effectively analyze motion comfort, a computationally efficient and accurate three dimensional (3D) human model, which runs faster than real-time, is presented. The model's postural stabilization parameters are tuned using available 3D vibration data for head, trunk and pelvis translation and rotation. A comparison between AHM and EHM is conducted regarding human body kinematics. According to the results, the EHM model configuration with two neck joints, two torso bending joints, and a spinal compression joint accurately predicts body kinematics.


page 1

page 2

page 3

page 4


Evaluation of motion comfort using advanced active human body models and efficient simplified models

Active muscles are crucial for maintaining postural stability when seate...

Anatomically Detailed Simulation of Human Torso

Existing digital human models approximate the human skeletal system usin...

The impact of body and head dynamics on motion comfort assessment

Head motion is a key determinant of motion comfort and differs substanti...

Modelling human seat contact interaction for vibration comfort

The seat to head vibration transmissibility depends on various character...

Diffusion Inertial Poser: Human Motion Reconstruction from Arbitrary Sparse IMU Configurations

Motion capture from a limited number of inertial measurement units (IMUs...

Transformer Inertial Poser: Attention-based Real-time Human Motion Reconstruction from Sparse IMUs

Real-time human motion reconstruction from a sparse set of wearable IMUs...

Please sign up or login with your details

Forgot password? Click here to reset