Computing skeletons for rectilinearly-convex obstacles in the rectilinear plane

04/09/2020
by   Marcus Volz, et al.
0

We introduce the concept of an obstacle skeleton which is a set of line segments inside a polygonal obstacle ω that can be used in place of ω when performing intersection tests for obstacle-avoiding network problems in the plane. A skeleton can have significantly fewer line segments compared to the number of line segments in the boundary of the original obstacle, and therefore performing intersection tests on a skeleton (rather than the original obstacle) can significantly reduce the CPU time required by algorithms for computing solutions to obstacle-avoidance problems. A minimum skeleton is a skeleton with the smallest possible number of line segments. We provide an exact O(n^2) algorithm for computing minimum skeletons for rectilinear obstacles in the rectilinear plane that are rectilinearly-convex. We show that the number of edges in a minimum skeleton is generally very small compared to the number of edges in the boundary of the original obstacle, by performing experiments on random rectilinearly-convex obstacles with up to 1000 vertices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro