Conditional Masking to Numerical Data

07/13/2018
by   Debolina Ghatak, et al.
0

Protecting the privacy of data-sets has become hugely important these days. Many real-life data-sets like income data, medical data need to be secured before making it public. However, security comes at the cost of losing some useful statistical information about the data-set. Data obfuscation deals with this problem of masking a data-set in such a way that the utility of the data is maximized while minimizing the risk of the disclosure of sensitive information. Two popular approaches to data obfuscation for numerical data involves (i) data swapping and (ii) adding noise to data. While the former masks well sacrificing the whole of correlation information, the latter gives estimates for most of the popular statistics like mean, variance, quantiles, correlation but fails to give an unbiased estimate of the distribution curve of the original data. In this paper, we propose a mixed method of obfuscation combining the above two approaches and discuss how the proposed method succeeds in giving an unbiased estimation of the distribution curve while giving reliable estimates of the other well-known statistics like moments, correlation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset