Conflict-Averse Gradient Optimization of Ensembles for Effective Offline Model-Based Optimization

03/31/2023
by   Sathvik Kolli, et al.
0

Data-driven offline model-based optimization (MBO) is an established practical approach to black-box computational design problems for which the true objective function is unknown and expensive to query. However, the standard approach which optimizes designs against a learned proxy model of the ground truth objective can suffer from distributional shift. Specifically, in high-dimensional design spaces where valid designs lie on a narrow manifold, the standard approach is susceptible to producing out-of-distribution, invalid designs that "fool" the learned proxy model into outputting a high value. Using an ensemble rather than a single model as the learned proxy can help mitigate distribution shift, but naive formulations for combining gradient information from the ensemble, such as minimum or mean gradient, are still suboptimal and often hampered by non-convergent behavior. In this work, we explore alternate approaches for combining gradient information from the ensemble that are robust to distribution shift without compromising optimality of the produced designs. More specifically, we explore two functions, formulated as convex optimization problems, for combining gradient information: multiple gradient descent algorithm (MGDA) and conflict-averse gradient descent (CAGrad). We evaluate these algorithms on a diverse set of five computational design tasks. We compare performance of ensemble MBO with MGDA and ensemble MBO with CAGrad with three naive baseline algorithms: (a) standard single-model MBO, (b) ensemble MBO with mean gradient, and (c) ensemble MBO with minimum gradient. Our results suggest that MGDA and CAGrad strike a desirable balance between conservatism and optimality and can help robustify data-driven offline MBO without compromising optimality of designs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset