Context is Key: New Approaches to Neural Coherence Modeling

12/06/2018
by   David McClure, et al.
0

We formulate coherence modeling as a regression task and propose two novel methods to combine techniques from our setup with pairwise approaches. The first of our methods is a model that we call "first-next," which operates similarly to selection sorting but conditions decision-making on information about already-sorted sentences. The second consists of a technique for adding context to regression-based models by concatenating sentence-level representations with an encoding of its corresponding out-of-order paragraph. This latter model achieves Kendall-tau distance and positional accuracy scores that match or exceed the current state-of-the-art on these metrics. Our results suggest that many of the gains that come from more complex, machine-translation inspired approaches can be achieved with simpler, more efficient models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro