Contextual Policy Optimisation

05/27/2018
by   Supratik Paul, et al.
2

Policy gradient methods have been successfully applied to a variety of reinforcement learning tasks. However, while learning in a simulator, these methods do not utilise the opportunity to improve learning by adjusting certain environment variables: unobservable state features that are randomly determined by the environment in a physical setting, but that are controllable in a simulator. This can lead to slow learning, or convergence to highly suboptimal policies. In this paper, we present contextual policy optimisation (CPO). The central idea is to use Bayesian optimisation to actively select the distribution of the environment variable that maximises the improvement generated by each iteration of the policy gradient method. To make this Bayesian optimisation practical, we contribute two easy-to-compute low-dimensional fingerprints of the current policy. We apply CPO to a number of continuous control tasks of varying difficulty and show that CPO can efficiently learn policies that are robust to significant rare events, which are unlikely to be observable under random sampling but are key to learning good policies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset