Contraction of Ore Ideals with Applications

11/25/2015
by   Yi Zhang, et al.
0

Ore operators form a common algebraic abstraction of linear ordinary differential and recurrence equations. Given an Ore operator L with polynomial coefficients in x, it generates a left ideal I in the Ore algebra over the field k(x) of rational functions. We present an algorithm for computing a basis of the contraction ideal of I in the Ore algebra over the ring R[x] of polynomials, where R may be either k or a domain with k as its fraction field. This algorithm is based on recent work on desingularization for Ore operators by Chen, Jaroschek, Kauers and Singer. Using a basis of the contraction ideal, we compute a completely desingularized operator for L whose leading coefficient not only has minimal degree in x but also has minimal content. Completely desingularized operators have interesting applications such as certifying integer sequences and checking special cases of a conjecture of Krattenthaler.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro