Convergence of solutions of discrete semi-linear space-time fractional evolution equations

10/16/2019
by   Harbir Antil, et al.
0

Let (-Δ)_c^s be the realization of the fractional Laplace operator on the space of continuous functions C_0(R), and let (-Δ_h)^s denote the discrete fractional Laplacian on C_0(Z_h), where 0<s<1 and Z_h:={hj: j∈Z} is a mesh of fixed size h>0. We show that solutions of fractional order semi-linear Cauchy problems associated with the discrete operator (-Δ_h)^s on C_0(Z_h) converge to solutions of the corresponding Cauchy problems associated with the continuous operator (-Δ)_c^s. In addition, we obtain that the convergence is uniform in t in compact subsets of [0,∞). We also provide numerical simulations that support our theoretical results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro