Cooperative Ambient Backscatter Communications for Green Internet-of-Things

01/04/2018
by   Gang Yang, et al.
0

Ambient backscatter communication (AmBC) enables a passive backscatter device to transmit information to a reader using ambient RF signals, and has emerged as a promising solution to green Internet-of-Things (IoT). Conventional AmBC receivers are interested in recovering the information from the ambient backscatter device (A-BD) only. In this paper, we propose a cooperative AmBC (CABC) system in which the reader recovers information not only from the A-BD, but also from the RF source. We first establish the system model for the CABC system from spread spectrum and spectrum sharing perspectives. Then, for flat fading channels, we derive the optimal maximum-likelihood (ML) detector, suboptimal linear detectors as well as successive interference-cancellation (SIC) based detectors. For frequency-selective fading channels, the system model for the CABC system over ambient orthogonal frequency division multiplexing (OFDM) carriers is proposed, upon which a low-complexity optimal ML detector is derived. For both kinds of channels, the bit-error-rate (BER) expressions for the proposed detectors are derived in closed forms. Finally, extensive numerical results have shown that, when the A-BD signal and the RF-source signal have equal symbol period, the proposed SIC-based detectors can achieve near-ML detection performance for typical application scenarios, and when the A-BD symbol period is longer than the RF-source symbol period, the existence of backscattered signal in the CABC system can enhance the ML detection performance of the RF-source signal, thanks to the beneficial effect of the backscatter link when the A-BD transmits at a lower rate than the RF source.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset