Corner Cases of the Generalized Tau Method
Polynomial spectral methods provide fast, accurate, and flexible solvers for broad ranges of PDEs with one bounded dimension, where the incorporation of general boundary conditions is well understood. However, automating extensions to domains with multiple bounded dimensions is challenging because of difficulties in implementing boundary conditions and imposing compatibility conditions at shared edges and corners. Past work has included various workarounds, such as the anisotropic inclusion of partial boundary data at shared edges or approaches that only work for specific boundary conditions. Here we present a general system for imposing boundary and compatibility conditions for elliptic equations on hypercubes. We take an approach based on the generalized tau method, which allows for a wide range of boundary conditions for many types of spectral methods. The generalized tau method has the distinct advantage that the specified polynomial residual determines the exact algebraic solution; afterwards, any stable numerical scheme will find the same result. We can, therefore, provide one-to-one comparisons to traditional collocation and Galerkin methods within the tau framework. As an essential requirement, we add specific tau corrections to the boundary conditions in addition to the bulk PDE. We then impose additional mutual compatibility conditions to ensure boundary conditions match at shared subsurfaces. Our approach works with general boundary conditions that commute on intersecting subsurfaces, including Dirichlet, Neumann, Robin, and any combination of these on all boundaries. The tau corrections and compatibility conditions can be fully isotropic and easily incorporated into existing solvers. We present the method explicitly for the Poisson equation in two and three dimensions and describe its extension to arbitrary elliptic equations (e.g. biharmonic) in any dimension.
READ FULL TEXT