CPM R-CNN: Calibrating Point-guided Misalignment in Object Detection

03/07/2020
by   Bin Zhu, et al.
0

In object detection, offset-guided and point-guided regression dominate anchor-based and anchor-free method separately. Recently, point-guided approach is introduced to anchor-based method. However, we observe points predicted by this way are misaligned with matched region of proposals and score of localization, causing a notable gap in performance. In this paper, we propose CPM R-CNN which contains three efficient modules to optimize anchor-based point-guided method. According to sufficient evaluations on the COCO dataset, CPM R-CNN is demonstrated efficient to improve the localization accuracy by calibrating mentioned misalignment. Compared with Faster R-CNN and Grid R-CNN based on ResNet-101 with FPN, our approach can substantially improve detection mAP by 3.3 best model achieves improvement by a large margin to 49.9 Code and models will be publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro