Cued@wmt19:ewc&lms

06/11/2019
by   Felix Stahlberg, et al.
0

Two techniques provide the fabric of the Cambridge University Engineering Department's (CUED) entry to the WMT19 evaluation campaign: elastic weight consolidation (EWC) and different forms of language modelling (LMs). We report substantial gains by fine-tuning very strong baselines on former WMT test sets using a combination of checkpoint averaging and EWC. A sentence-level Transformer LM and a document-level LM based on a modified Transformer architecture yield further gains. As in previous years, we also extract n-gram probabilities from SMT lattices which can be seen as a source-conditioned n-gram LM.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset