Curvature Graph Generative Adversarial Networks

03/03/2022
by   Jianxin Li, et al.
0

Generative adversarial network (GAN) is widely used for generalized and robust learning on graph data. However, for non-Euclidean graph data, the existing GAN-based graph representation methods generate negative samples by random walk or traverse in discrete space, leading to the information loss of topological properties (e.g. hierarchy and circularity). Moreover, due to the topological heterogeneity (i.e., different densities across the graph structure) of graph data, they suffer from serious topological distortion problems. In this paper, we proposed a novel Curvature Graph Generative Adversarial Networks method, named , which is the first GAN-based graph representation method in the Riemannian geometric manifold. To better preserve the topological properties, we approximate the discrete structure as a continuous Riemannian geometric manifold and generate negative samples efficiently from the wrapped normal distribution. To deal with the topological heterogeneity, we leverage the Ricci curvature for local structures with different topological properties, obtaining to low-distortion representations. Extensive experiments show that CurvGAN consistently and significantly outperforms the state-of-the-art methods across multiple tasks and shows superior robustness and generalization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset