Cutting out the Middle-Man: Training and Evaluating Energy-Based Models without Sampling

02/13/2020
by   Will Grathwohl, et al.
1

We present a new method for evaluating and training unnormalized density models. Our approach only requires access to the gradient of the unnormalized model's log-density. We estimate the Stein discrepancy between the data density p(x) and the model density q(x) defined by a vector function of the data. We parameterize this function with a neural network and fit its parameters to maximize the discrepancy. This yields a novel goodness-of-fit test which outperforms existing methods on high dimensional data. Furthermore, optimizing q(x) to minimize this discrepancy produces a novel method for training unnormalized models which scales more gracefully than existing methods. The ability to both learn and compare models is a unique feature of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro