Cutting resilient networks -- complete binary trees

11/14/2018
by   Xing Shi Cai, et al.
0

In our previous work, we introduced the random k-cut number for rooted graphs. In this paper, we show that the distribution of the k-cut number in complete binary trees of size n, after rescaling, is asymptotically a periodic function of n - n. Thus there are different limit distributions for different subsequences, where these limits are similar to weakly 1-stable distributions. This generalizes the result for the case k = 1, i.e., the traditional cutting model, by Janson.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro