Cyclotomic Identity Testing and Applications

07/26/2020
by   Nikhil Balaji, et al.
0

We consider the cyclotomic identity testing (CIT) problem: given a polynomial f(x_1,…,x_k), decide whether f(ζ_n^e_1,…,ζ_n^e_k) is zero, where ζ_n = e^2π i/n is a primitive complex n-th root of unity and e_1,…,e_k are integers, represented in binary. When f is given by an algebraic circuit, we give a randomized polynomial-time algorithm for CIT assuming the generalised Riemann hypothesis (GRH), and show that the problem is in coNP unconditionally. When f is given by a circuit of polynomially bounded degree, we give a randomized NC algorithm. In case f is a linear form we show that the problem lies in NC. Towards understanding when CIT can be solved in deterministic polynomial-time, we consider so-called diagonal depth-3 circuits, i.e., polynomials f=∑_i=1^m g_i^d_i, where g_i is a linear form and d_i a positive integer given in unary. We observe that a polynomial-time algorithm for CIT on this class would yield a sub-exponential-time algorithm for polynomial identity testing. However, assuming GRH, we show that if the linear forms g_i are all identical then CIT can be solved in polynomial time. Finally, we use our results to give a new proof that equality of compressed strings, i.e., strings presented using context-free grammars, can be decided in randomized NC.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro