Data-Driven Neuromorphic DRAM-based CNN and RNN Accelerators

03/29/2020
by   Tobi Delbruck, et al.
0

The energy consumed by running large deep neural networks (DNNs) on hardware accelerators is dominated by the need for lots of fast memory to store both states and weights. This large required memory is currently only economically viable through DRAM. Although DRAM is high-throughput and low-cost memory (costing 20X less than SRAM), its long random access latency is bad for the unpredictable access patterns in spiking neural networks (SNNs). In addition, accessing data from DRAM costs orders of magnitude more energy than doing arithmetic with that data. SNNs are energy-efficient if local memory is available and few spikes are generated. This paper reports on our developments over the last 5 years of convolutional and recurrent deep neural network hardware accelerators that exploit either spatial or temporal sparsity similar to SNNs but achieve SOA throughput, power efficiency and latency even with the use of DRAM for the required storage of the weights and states of large DNNs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset