DC-SPP-YOLO: Dense Connection and Spatial Pyramid Pooling Based YOLO for Object Detection
Although YOLOv2 approach is extremely fast on object detection; its backbone network has the low ability on feature extraction and fails to make full use of multi-scale local region features, which restricts the improvement of object detection accuracy. Therefore, this paper proposed a DC-SPP-YOLO (Dense Connection and Spatial Pyramid Pooling Based YOLO) approach for ameliorating the object detection accuracy of YOLOv2. Specifically, the dense connection of convolution layers is employed in the backbone network of YOLOv2 to strengthen the feature extraction and alleviate the vanishing-gradient problem. Moreover, an improved spatial pyramid pooling is introduced to pool and concatenate the multi-scale local region features, so that the network can learn the object features more comprehensively. The DC-SPP-YOLO model is established and trained based on a new loss function composed of mean square error and cross entropy, and the object detection is realized. Experiments demonstrate that the mAP (mean Average Precision) of DC-SPP-YOLO proposed on PASCAL VOC datasets and UA-DETRAC datasets is higher than that of YOLOv2; the object detection accuracy of DC-SPP-YOLO is superior to YOLOv2 by strengthening feature extraction and using the multi-scale local region features.
READ FULL TEXT