Decoupled, linear, unconditionally energy stable and charge-conservative finite element method for a inductionless magnetohydrodynamic phase-field model
In this paper, we consider the numerical approximation for a diffuse interface model of the two-phase incompressible inductionless magnetohydrodynamics problem. This model consists of Cahn-Hilliard equations, Navier-Stokes equations and Poisson equation. We propose a linear and decoupled finite element method to solve this highly nonlinear and multi-physics system. For the time variable, the discretization is a combination of first-order Euler semi-implicit scheme, several first-order stabilization terms and implicit-explicit treatments for coupling terms. For the space variables, we adopt the finite element discretization, especially, we approximate the current density and electric potential by inf-sup stable face-volume mixed finite element pairs. With these techniques, the scheme only involves a sequence of decoupled linear equations to solve at each time step. We show that the scheme is provably mass-conservative, charge-conservative and unconditionally energy stable. Numerical experiments are performed to illustrate the features, accuracy and efficiency of the proposed scheme.
READ FULL TEXT