Deep Autoregressive Regression

11/14/2022
by   Adam Khakhar, et al.
0

In this work, we demonstrate that a major limitation of regression using a mean-squared error loss is its sensitivity to the scale of its targets. This makes learning settings consisting of several subtasks with differently-scaled targets challenging, and causes algorithms to require task-specific learning rate tuning. A recently-proposed alternative loss function, known as histogram loss, avoids this issue. However, its computational cost grows linearly with the number of buckets in the histogram, which renders prediction with real-valued targets intractable. To address this issue, we propose a novel approach to training deep learning models on real-valued regression targets, autoregressive regression, which learns a high-fidelity distribution by utilizing an autoregressive target decomposition. We demonstrate that this training objective allows us to solve regression tasks involving multiple targets with different scales.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset