Deep Latent Defence
Deep learning methods have shown state of the art performance in a range of tasks from computer vision to natural language processing. However, it is well known that such systems are vulnerable to attackers who craft inputs in order to cause misclassification. The level of perturbation an attacker needs to introduce in order to cause such a misclassification can be extremely small, and often imperceptible. This is of significant security concern, particularly where misclassification can cause harm to humans. We thus propose Deep Latent Defence, an architecture which seeks to combine adversarial training with a detection system. At its core Deep Latent Defence has a adversarially trained neural network. A series of encoders take the intermediate layer representation of data as it passes though the network and project it to a latent space which we use for detecting adversarial samples via a k-nn classifier. We present results using both grey and white box attackers, as well as an adaptive L_∞ bounded attack which was constructed specifically to try and evade our defence. We find that even under the strongest attacker model that we have investigated our defence is able to offer significant defensive benefits.
READ FULL TEXT