Deep Learning by Scattering

06/24/2013
by   Stéphane Mallat, et al.
0

We introduce general scattering transforms as mathematical models of deep neural networks with l2 pooling. Scattering networks iteratively apply complex valued unitary operators, and the pooling is performed by a complex modulus. An expected scattering defines a contractive representation of a high-dimensional probability distribution, which preserves its mean-square norm. We show that unsupervised learning can be casted as an optimization of the space contraction to preserve the volume occupied by unlabeled examples, at each layer of the network. Supervised learning and classification are performed with an averaged scattering, which provides scattering estimations for multiple classes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset