Deep Learning for Cognitive Neuroscience

by   Katherine R. Storrs, et al.

Neural network models can now recognise images, understand text, translate languages, and play many human games at human or superhuman levels. These systems are highly abstracted, but are inspired by biological brains and use only biologically plausible computations. In the coming years, neural networks are likely to become less reliant on learning from massive labelled datasets, and more robust and generalisable in their task performance. From their successes and failures, we can learn about the computational requirements of the different tasks at which brains excel. Deep learning also provides the tools for testing cognitive theories. In order to test a theory, we need to realise the proposed information-processing system at scale, so as to be able to assess its feasibility and emergent behaviours. Deep learning allows us to scale up from principles and circuit models to end-to-end trainable models capable of performing complex tasks. There are many levels at which cognitive neuroscientists can use deep learning in their work, from inspiring theories to serving as full computational models. Ongoing advances in deep learning bring us closer to understanding how cognition and perception may be implemented in the brain -- the grand challenge at the core of cognitive neuroscience.


page 4

page 11


Building machines that adapt and compute like brains

Building machines that learn and think like humans is essential not only...

What deep learning can tell us about higher cognitive functions like mindreading?

Can deep learning (DL) guide our understanding of computations happening...

Informing Artificial Intelligence Generative Techniques using Cognitive Theories of Human Creativity

The common view that our creativity is what makes us uniquely human sugg...

Abutting Grating Illusion: Cognitive Challenge to Neural Network Models

Even the state-of-the-art deep learning models lack fundamental abilitie...

Explanatory models in neuroscience: Part 1 – taking mechanistic abstraction seriously

Despite the recent success of neural network models in mimicking animal ...

SCNN: Swarm Characteristic Neural Network

Deep learning is a powerful approach with good performance on many diffe...

Modeling the Mind: A brief review

The brain is a powerful tool used to achieve amazing feats. There have b...

Please sign up or login with your details

Forgot password? Click here to reset