Deep Learning for Inertial Positioning: A Survey
Inertial sensor has been widely deployed on smartphones, drones, robots and IoT devices. Due to its importance in ubiquitous and robust localization, inertial sensor based positioning is key in many applications, including personal navigation, location based security, and human-device interaction. However, inertial positioning suffers from the so-called error drifts problem, as the measurements of low-cost MEMS inertial sensor are corrupted with various inevitable error sources, leading to unbounded drifts when being integrated doubly in traditional inertial navigation algorithms. Recently, with increasing sensor data and computational power, the fast developments in deep learning have spurred a large amount of research works in introducing deep learning to tackle the problem of inertial positioning. Relevant literature spans from the areas of mobile computing, robotics and machine learning. This article comprehensively reviews relevant works on deep learning based inertial positioning, connects the efforts from different fields, and covers how deep learning can be applied to solve sensor calibration, positioning error drifts reduction and sensor fusion. Finally, we provide insights on the benefits and limitations of existing works, and indicate the future opportunities in this direction.
READ FULL TEXT