Deep Learning Parametrization for B-Spline Curve Approximation
In this paper we present a method using deep learning to compute parametrizations for B-spline curve approximation. Existing methods consider the computation of parametric values and a knot vector as separate problems. We propose to train interdependent deep neural networks to predict parametric values and knots. We show that it is possible to include B-spline curve approximation directly into the neural network architecture. The resulting parametrizations yield tight approximations and are able to outperform state-of-the-art methods.
READ FULL TEXT