Deep Learning to Scale up Time Series Traffic Prediction
The transport literature is dense regarding short-term traffic predictions, up to the scale of 1 hour, yet less dense for long-term traffic predictions. The transport literature is also sparse when it comes to city-scale traffic predictions, mainly because of low data availability. The main question we try to answer in this work is to which extent the approaches used for short-term prediction at a link level can be scaled up for long-term prediction at a city scale. We investigate a city-scale traffic dataset with 14 weeks of speed observations collected every 15 minutes over 1098 segments in the hypercenter of Los Angeles, California. We look at a variety of machine learning and deep learning predictors for link-based predictions, and investigate ways to make such predictors scale up for larger areas, with brute force, clustering, and model design approaches. In particular we propose a novel deep learning spatio-temporal predictor inspired from recent works on recommender systems. We discuss the potential of including spatio-temporal features into the predictors, and conclude that modelling such features can be helpful for long-term predictions, while simpler predictors achieve very satisfactory performance for link-based and short-term forecasting. The trade-off is discussed not only in terms of prediction accuracy vs prediction horizon but also in terms of training time and model sizing.
READ FULL TEXT