Deep Meta-Learning: Learning to Learn in the Concept Space

02/10/2018
by   Fengwei Zhou, et al.
0

Few-shot learning remains challenging for meta-learning that learns a learning algorithm (meta-learner) from many related tasks. In this work, we argue that this is due to the lack of a good representation for meta-learning, and propose deep meta-learning to integrate the representation power of deep learning into meta-learning. The framework is composed of three modules, a concept generator, a meta-learner, and a concept discriminator, which are learned jointly. The concept generator, e.g. a deep residual net, extracts a representation for each instance that captures its high-level concept, on which the meta-learner performs few-shot learning, and the concept discriminator recognizes the concepts. By learning to learn in the concept space rather than in the complicated instance space, deep meta-learning can substantially improve vanilla meta-learning, which is demonstrated on various few-shot image recognition problems. For example, on 5-way-1-shot image recognition on CIFAR-100 and CUB-200, it improves Matching Nets from 50.53 58.18 and improves Meta-SGD from 53.83 respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro