Deep Meta-Learning: Learning to Learn in the Concept Space
Few-shot learning remains challenging for meta-learning that learns a learning algorithm (meta-learner) from many related tasks. In this work, we argue that this is due to the lack of a good representation for meta-learning, and propose deep meta-learning to integrate the representation power of deep learning into meta-learning. The framework is composed of three modules, a concept generator, a meta-learner, and a concept discriminator, which are learned jointly. The concept generator, e.g. a deep residual net, extracts a representation for each instance that captures its high-level concept, on which the meta-learner performs few-shot learning, and the concept discriminator recognizes the concepts. By learning to learn in the concept space rather than in the complicated instance space, deep meta-learning can substantially improve vanilla meta-learning, which is demonstrated on various few-shot image recognition problems. For example, on 5-way-1-shot image recognition on CIFAR-100 and CUB-200, it improves Matching Nets from 50.53 58.18 and improves Meta-SGD from 53.83 respectively.
READ FULL TEXT