Deep Secure Encoding: An Application to Face Recognition

06/14/2015
by   Rohit Pandey, et al.
0

In this paper we present Deep Secure Encoding: a framework for secure classification using deep neural networks, and apply it to the task of biometric template protection for faces. Using deep convolutional neural networks (CNNs), we learn a robust mapping of face classes to high entropy secure codes. These secure codes are then hashed using standard hash functions like SHA-256 to generate secure face templates. The efficacy of the approach is shown on two face databases, namely, CMU-PIE and Extended Yale B, where we achieve state of the art matching performance, along with cancelability and high security with no unrealistic assumptions. Furthermore, the scheme can work in both identification and verification modes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset