Deep Spatio-Temporal Wind Power Forecasting

09/29/2021
by   Jiangyuan Li, et al.
0

Wind power forecasting has drawn increasing attention among researchers as the consumption of renewable energy grows. In this paper, we develop a deep learning approach based on encoder-decoder structure. Our model forecasts wind power generated by a wind turbine using its spatial location relative to other turbines and historical wind speed data. In this way, we effectively integrate spatial dependency and temporal trends to make turbine-specific predictions. The advantages of our method over existing work can be summarized as 1) it directly predicts wind power based on historical wind speed, without the need for prediction of wind speed first, and then using a transformation; 2) it can effectively capture long-term dependency 3) our model is more scalable and efficient compared with other deep learning based methods. We demonstrate the efficacy of our model on the benchmark real-world datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset