DeepEdgeBench: Benchmarking Deep Neural Networks on Edge Devices

by   Stephan Patrick Baller, et al.

EdgeAI (Edge computing based Artificial Intelligence) has been most actively researched for the last few years to handle variety of massively distributed AI applications to meet up the strict latency requirements. Meanwhile, many companies have released edge devices with smaller form factors (low power consumption and limited resources) like the popular Raspberry Pi and Nvidia's Jetson Nano for acting as compute nodes at the edge computing environments. Although the edge devices are limited in terms of computing power and hardware resources, they are powered by accelerators to enhance their performance behavior. Therefore, it is interesting to see how AI-based Deep Neural Networks perform on such devices with limited resources. In this work, we present and compare the performance in terms of inference time and power consumption of the four Systems on a Chip (SoCs): Asus Tinker Edge R, Raspberry Pi 4, Google Coral Dev Board, Nvidia Jetson Nano, and one microcontroller: Arduino Nano 33 BLE, on different deep learning models and frameworks. We also provide a method for measuring power consumption, inference time and accuracy for the devices, which can be easily extended to other devices. Our results showcase that, for Tensorflow based quantized model, the Google Coral Dev Board delivers the best performance, both for inference time and power consumption. For a low fraction of inference computation time, i.e. less than 29.3 than the other devices.


page 1

page 8


LPYOLO: Low Precision YOLO for Face Detection on FPGA

In recent years, number of edge computing devices and artificial intelli...

Deep Learning-Based Multiple Object Visual Tracking on Embedded System for IoT and Mobile Edge Computing Applications

Compute and memory demands of state-of-the-art deep learning methods are...

An Evaluation of Edge TPU Accelerators for Convolutional Neural Networks

Edge TPUs are a domain of accelerators for low-power, edge devices and a...

Brain-Inspired Hyperdimensional Computing: How Thermal-Friendly for Edge Computing?

Brain-inspired hyperdimensional computing (HDC) is an emerging machine l...

Scientific Image Restoration Anywhere

The use of deep learning models within scientific experimental facilitie...

Rethinking Pareto Frontier for Performance Evaluation of Deep Neural Networks

Recent efforts in deep learning show a considerable advancement in redes...

An adaptable cognitive microcontroller node for fitness activity recognition

The new generation of wireless technologies, fitness trackers, and devic...

Please sign up or login with your details

Forgot password? Click here to reset