Delving into 3D Action Anticipation from Streaming Videos

06/15/2019
by   Hongsong Wang, et al.
0

Action anticipation, which aims to recognize the action with a partial observation, becomes increasingly popular due to a wide range of applications. In this paper, we investigate the problem of 3D action anticipation from streaming videos with the target of understanding best practices for solving this problem. We first introduce several complementary evaluation metrics and present a basic model based on frame-wise action classification. To achieve better performance, we then investigate two important factors, i.e., the length of the training clip and clip sampling method. We also explore multi-task learning strategies by incorporating auxiliary information from two aspects: the full action representation and the class-agnostic action label. Our comprehensive experiments uncover the best practices for 3D action anticipation, and accordingly we propose a novel method with a multi-task loss. The proposed method considerably outperforms the recent methods and exhibits the state-of-the-art performance on standard benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset