Deniable Encryption in a Quantum World

12/30/2021
by   Andrea Coladangelo, et al.
0

(Sender-)Deniable encryption provides a very strong privacy guarantee: a sender who is coerced by an attacker into "opening" their ciphertext after-the-fact is able to generate "fake" local random choices that are consistent with any plaintext of their choice. The only known fully-efficient constructions of public-key deniable encryption rely on indistinguishability obfuscation (iO) (which currently can only be based on sub-exponential hardness assumptions). In this work, we study (sender-)deniable encryption in a setting where the encryption procedure is a quantum algorithm, but the ciphertext is classical. We propose two notions of deniable encryption in this setting. The first notion, called quantum deniability, parallels the classical one. We give a fully efficient construction satisfying this definition, assuming the quantum hardness of the Learning with Errors (LWE) problem. The second notion, unexplainability, starts from a new perspective on deniability, and leads to a natural common view of deniability in the classical and quantum settings. We give a construction which is secure in the random oracle model, assuming the quantum hardness of LWE. Notably, our construction satisfies a strong form of unexplainability which is impossible to achieve classically, thus highlighting a new quantum phenomenon that may be of independent interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro