Denial-of-Service Attack Detection via Differential Analysis of Generalized Entropy Progressions
Denial-of-Service (DoS) attacks are one the most common and consequential cyber attacks in computer networks. While existing research offers a plethora of detection methods, the issue of achieving both scalability and high detection accuracy remains open. In this work, we address this problem by developing a differential method based on generalized entropy progression. In this method, we continuously fit the line of best fit to the entropy progression and check if the derivative, that is, the slope of this line is less than the negative of the dynamically computed standard deviation of the derivatives. As a result, we omit the usage of the thresholds and the results with five real-world network traffic datasets confirm that our method outperforms threshold-based DoS attack detection by two orders of magnitude on average. Our method achieves false positive rates that are up to 7 arithmetic mean is 3 network flow. Moreover, since the main computation cost of our method is the entropy computation, which is linear in the volume of the unit-time network flow and it uses integer only operations and a small fraction of the total flow, it is therefore lightweight and scalable.
READ FULL TEXT