Denominator Bounds for Systems of Recurrence Equations using ΠΣ-Extensions

04/30/2017
by   Johannes Middeke, et al.
0

We consider linear systems of recurrence equations whose coefficients are given in terms of indefinite nested sums and products covering, e.g., the harmonic numbers, hypergeometric products, q-hypergeometric products or their mixed versions. These linear systems are formulated in the setting of ΠΣ-extensions and our goal is to find a denominator bound (also known as universal denominator) for the solutions; i.e., a non-zero polynomial d such that the denominator of every solution of the system divides d. This is the first step in computing all rational solutions of such a rather general recurrence system. Once the denominator bound is known, the problem of solving for rational solutions is reduced to the problem of solving for polynomial solutions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset