Dense Contrastive Learning for Self-Supervised Visual Pre-Training

11/18/2020
by   Xinlong Wang, et al.
2

To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly works at the level of pixels (or local features) by taking into account the correspondence between local features. We present dense contrastive learning, which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images. Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only <1 transferring to downstream dense prediction tasks including object detection, semantic segmentation and instance segmentation; and outperforms the state-of-the-art methods by a large margin. Specifically, over the strong MoCo-v2 baseline, our method achieves significant improvements of 2.0 PASCAL VOC object detection, 1.1 instance segmentation, 3.0 mIoU on Cityscapes semantic segmentation. Code is available at: https://git.io/AdelaiDet

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset